
 Web22 - Database Mandatory #2 
 Peter Frankild 

 The ACID principles 

 Atomicity 

 Transactions are seen when a database consists of several tables that interact with each other. 
 This is seen in social media where a post can have multiple comment, if the tables do not have a 
 transaction setup in MyAdminDB there will not be the proper atomicity in the database, you should 
 not be able to delete a post without the comments for that unique post being deleted with it. This is 
 where transaction provides security by either declaring that the operation was successful as an 
 unique unit event or if there is an error in the two operations the event will be stopped. Another 
 example is seen when moving money from one account to another, there are two operations to be 
 performed, an atomic transaction that ensures the database is always consistent. 

 Consistency 
 Consistency ensure that the database only can move from one consistance state to another. 
 This is done by ensuring that all data that is inserted to the Database is following all the defined 
 rules, this could be constraings, cascades, triggers. This prevent corrupted data and ensure that 
 the relationsship between forigin key and primary key is in place. 

 Isolation 
 Isolation is used when a transaction is executed on multiple tables at the same time, so that the 
 database is kept in the same state as if the transaction were executed sequentially. It ensures that 
 the execution is hidden until it has taken place. 

 Durability 
 Durability ensures that the transaction is preserved as a completed transaction even if the system 
 is deleted or fails for some reason. Durability is done by making a non-volatile record of the 
 transaction. 

 1 



 Document database 
 A document database is a non-relational database eg. MongoDB, ArangoDB, Firebase, Firestore, 
 SurrealDB. The document database has this structure, Database name, one or more collections, 
 the table in an relational database. The Collections is a collection of documents. Documents 
 contain data like an object in a relational db. Then there are several query operators that can be 
 used in schema validating, compare and reference data. 

 With aggregation you can group sort, calc an analyze data, and it is possible to use more than one 
 stage in the query, each stage run upon the results from a previous stage. 
 This is how we use aggregate: 

 db.posts.aggregate([ 
 // Stage 1: Only find documents that have more than 1 like 
 { 
 $match: { likes: { $gt: 1 } }//$gt(greater than) 

 }, 
 // Stage 2: Group documents by category and sum each categories likes 
 { 
 $group: { _id: "$category", totalLikes: { $sum: "$likes" } } 

 } 
 ]) 

 There are name restrictions when creating document databases like there can't be empty spaces 
 and the capitalization has to be consistent throughout the use, and you can not rely on the 
 capitalisation alone, ex Datatype and dataType won’t work as unique db. There are also special 
 characters that won’t work like "$*<>:|? on a MongoDB windows installation and "$ on Unix, Linux. 
 There are restrictions for the field name _id that always is a unique primary key in the collection. 

 The validation rules are created using a schema that allows e.g. data types and value ranges, this 
 will only work on newly inserted documents. If the validation fails the document will not be written 
 to the collection, but it is possible to allow invalid documents and to have a log warning made. 

 // Using schema validation rules $jsonSchema, this is how it will look like 
 db.createCollection("xxx", { 
 validator: { 
 $jsonSchema: { 
 bsonType: "object", 
 title: "Student Object Validation", 
 required: [ "address", "major", "name", "year" ], 
 properties: { 
 name: { 
 bsonType: "string", 
 description: "'name' must be a string and is required" 
 }, 
 year: { 
 bsonType: "int", 
 minimum: 2017, 
 maximum: 3017, 

 2 

https://www.w3schools.com/mongodb/mongodb_aggregations_lookup.php


 // And it’s rules can be changed using 
 db.runCommand( {collMod:”xxx”,...}) 

 Modeling a document database 
 This is a model from the relational database TWEET in the Database - Mandatory #1 assignment. 

 3 



 Primary keys" and "foreign keys 
 Non-relational databases do not support primary and foreign keys. MongoDB stores data records 
 as documents in a collection. 

 There are different terms used when describing the relations in a document db. As we know from 
 the relations db we can refer to the relations as primary and foreign keys, in a non-relational 
 database the _id is the default primary key. The entity attributes are defined data types such as 
 string, boolean, arrays. 
 Entity relationships can be One to One, One to Many or Many-Many relationships depending on 
 the relationship between the documents. 

 One to Many (1:n) occurs when one row of table A may be referenced to any number of  rows in 
 table B and where Table B only can be referenced to one row in table A. 

 Many-Many (n:m) occurs when each reference to many rows in table A can refer to many rows in 
 table B. The n:m relation between tables is done by making a referring table that contains a row 
 with an array of the two foreign keys that have the many-to-many relation. 

 For example, for long text descriptions, you can create an additional text description collection 
 where the name field is given a unique id for fast processing and to avoid duplicates. An additional 
 query then retrieves the text description. If you want to delete or rename this id you have to edit 
 each row in the referring collection. 

 If you have a relationship between two documents in a non-relational db you can either use 
 embedding or make a reference to the related document with a _id (primary key). 

 In a one to one you will make the relation between the two related entities embedding unique id’s 
 in the same document. 

 4 



 If you have a one to many relationship you have to decide if you use a referencing or embedding If 
 the number of relations is low the data needs to be accessed together as an embedded entity in a 
 single document. Is the data infrequent or varying with time referencing is preferred. 
 In a many to many relationship, can either be a child reference or the referenced is a static entity. 
 Parent References are used when the entity is growing. New child documents add a reference to 
 the parent document’s primary key. 

 The JSON structure of the documents allows defining relationships using either embedding (nested 
 structure) or creating references of related documents using the primary keys, and is great for fast 
 development, with a simple structure and large amount of data. 

 $unwind operator separates each value from an array in a json like structure. 

 If a document contains too much data 
 I will store the main data in a folder with a coded backend limit, if the limit is reached the backend 
 will delete the oldest data in the new_data_folder and place them in the old_data_folder. in the id 
 the data belongs to, there is an array with id and data (info), and FK (foreign key) from the 
 new_data_folder in the database. From this database the backend will be able to find the fast 
 new_data_folder and can retrieve data from the old_data_folder. This works when the data in the 
 folders has an FK (foreign key) that belongs to the id they are associated with. 

 In-memory db 
 If you have a database that has to be able to handle many in a short time responses to an id. The 
 in-memory also known as Key value setup stores the latest id and info in the ram. From the 
 in-memory in the server it is much faster to deploy the promise of data to the client end. 

 Graph database 
 Neo4j, ArangoDB, SurrealDB on a localhost installation, you run the server and client from two 
 different terminals. 

 Edge describes the relation between all the connected vertex. The Vertex also known as Node is a 
 enterti in the database  like persons, items, emails eg. the attribute is a piece of information which 
 determines the properties of a field or tag in a database or a string of characters in a display. 
 In every database there is attributes that determints the property of a field like datatype, index and 
 constraints. 

 Edge  Verb  Edge 
 Node  Relation  Node 
 Noun  Noun 
 RELATE user:a -> likes -> item:adidas 

 Nodes describe entities, and can have zero or more labels.The relationship is a connection 
 between a source node and a target node,  must have a type, and it has only one direction. Nodes 
 and relationships can have properties key, value 

 5 



 CRUD queries in a document database 
 This is how we use INSERT: 

 db.users.insertOne(  //collection 
 { 
 name: "Peter",  // field: value{ Document 
 age: 20,  // field: value{ Document 
 runtime: 121,  // field: value{ Document 
 education: "mmd",  // field: value{ Document 
 year: 2019  // field: value{ Document 

 } 
 ) 

 db.users.insertMany([ 
 { 
 name: "Joe", 
 age: 25, 
 education: "mcm", 
 year: 2021 

 }, 
 { 
 name: "Lis", 
 age: 19, 
 education: "ak", 
 year: 2020 

 } 
 ]) 

 This is how we use READ: 
 db.users.find(  //collection 
 {age: {$gt: 20} },  //query criteria 

 {name:1, education:1}  //projection 
 ).limit(2)  //Cursor modifier 

 { _id: ObjectId("637eab6d91e17482769d872f"), 
 name: 'Joe', 
 education: 'mcm' } 

 db.users.find({}) 

 This is how we use UPDATE: 
 db.users.updateOne(  //collection 
 { name: "Joe" },  //update filter 
 { $set: { education:"sms" }  //update action 
 }) 

 { acknowledged: true, 
 insertedId: null, 
 matchedCount: 1, 
 modifiedCount: 1, 

 6 



 upsertedCount: 0 } 

 This is how we use DELETE: 
 db.users.deleteOne(  //collection 
 {name:"joer"}  //delete filter 
 ) 

 { acknowledged: true, deletedCount: 0 } 

 db.users.find({}) 
 { _id: ObjectId("637ea8d591e17482769d872c"), 
 name: 'Peter', 
 age: 20, 
 runtime: 121, 
 education: 'mmd', 
 year: 2019 } 

 { _id: ObjectId("637ea8e891e17482769d872d"), 
 name: 'Joe', 
 age: 25, 
 education: 'sms', 
 year: 2021 } 

 { _id: ObjectId("637ea8e891e17482769d872e"), 
 name: 'Lis', 
 age: 19, 
 education: 'ak', 
 year: 2020 } 

 db.users.deleteMany({}) 
 { acknowledged: true, deletedCount: 3 } 

 2 graph database commands 
 //select all the likes in all items that are liked from user a. 
 SELECT *, ->likes->item.* AS likes FROM user:a 

 // select who user c some final friended med and at the same time buy item x. 
 SELECT <-friended.*.in->bought[WHERE out=item:x] AS final FROM user:c 

 1.  In a relational/document database what is Full Text Search? Make sure you apply this 
 concept to your own database. You will be asked to show a practical example of it 

 Full Text Search 
 Full-text search is an index that is created and that will remove special characters markeds in 
 letters. It will filter important fillers words out like - and, a or it, this is based on the language. Then 
 the index will link words to keywords if they are in different tenses and whether they are in plural 
 singular. Finally, everything is indexed in either upper or lower case. 

 7 



 Other types of JOIN 
 In a relational SQL db you can use the JOIN clause that  combines rows from two or more tables, if 
 there is one primary and one foreing key that relates the column between them. There are  four or 
 more different types e.g. JOIN, FULL OUTER, RIGHT, LEFT. 

 In the company_one database on phpMyAdmin we can get the records from the table items id and 
 table orders item_fk where primary and foreign key match with an = operator 

 SELECT users.name, items.item_name, items.price 
 FROM users 
 JOIN items 
 ON users.id=items.id 

 SELECT orders.order, items.name, items.price 
 FROM orders 
 JOIN items 
 ON items.id=orders.item_fk 

 SELECT orders.order, items.name, items.price 
 FROM orders 
 LEFT JOIN items 
 ON items.id=orders.user_fk 

 8 



 SELECT orders.order, items.name, items.price 
 FROM orders 
 RIGHT JOIN items 
 ON items.id=orders.user_fk 

 then there is outer join that is all just not inner join, right and left join work as a selection without the 
 other. 

 //The FULL JOIN has issues in phpMyAdmin/ MySQL, but will work with 
 PostgreSQL, and SQL Server 
 SELECT orders.order, items.name, items.price 
 FROM orders 
 FULL JOIN items 
 ON items.id=orders.user_fk 

 LEFT / RIGHT JOINT can be unioned with UNION in phpMyAdmin/ MySQL 
 SELECT orders.order, items.name, items.price 
 FROM items 
 LEFT JOIN orders ON items.id = orders.user_fk 
 UNION 
 SELECT orders.order, items.name, items.price 
 FROM orders 
 RIGHT JOIN items ON orders.user_fk = items.id 

 2 triggers created in a relational db 
 1. 

 increase_total_phones --Trigger name 
 phones --Table 
 after --Time 
 insert --Event 

 9 



 UPDATE users --Definition 
 SET total_phones=total_phones + 1 
 WHERE users.id = NEW.user_fk 
 root@localhost --Definer 

 2. 
 increase_total_orders --Trigger name 
 orders --Table 
 after --Time 
 insert --Event 
 UPDATE users --Definition 
 SET total_orders=total_orders + 1 
 WHERE users.id = NEW.user_fk 
 root@localhost --Definer 

 2 stored procedures in a relational db 
 With Stored procedure you can prepare a SQL query code with a name and save it. It is used 
 when you are writing the same query often, and can be EXEC with parameter values. 
 To save a Stored procedure In phpmyadmin go to database then routines and make a new one, it 
 can also easily be made by a SQL query like this.CREATE PROCEDURE is the command in the 
 query that starts the procedure. 

 1. 
 -- Select all users 
 CREATE PROCEDURE SelectAllUsers 
 AS 
 SELECT * FROM users LIMIT 1, 2 
 GO; 
 -- call the procedure 
 EXEC SelectAllUsers; 

 -- get all mails from users 

 2. 
 CREATE PROCEDURE SelectAllWithEmail 
 AS 
 SELECT * FROM users 
 where users.email = email 
 GO 
 -- call the procedure 
 EXEC SelectAllWithEmail; 

 10 



 2 views in a relational 
 In SQL VIEW is a virtual table made from the result of a SQL statement. A view is like a real table 
 but the field is made of one up to several real tables, but presents the data like it were coming from 
 a single table. To create a view you have to start the query with CREATE VIEW 

 1. 
 CREATE VIEW [users and phones] AS 
 SELECT users.*, phones.phone 
 FROM users 
 JOIN phones  on users.id = phones.user_fk 

 2. 
 CREATE VIEW [average price] AS 
 SELECT name, price 
 FROM items 
 WHERE price < (SELECT AVG(price) FROM items); 

 SELECT * FROM [average price]; 
 DROP VIEW average price; 

 SQL queries "UNION", "HAVING", "GROUP BY" 
 Union operator is used when you combine two or more tables. The rule is that it has to have same 
 numbers of columns, of the same data type, and that the columns in the  SELECT statement also 
 has the same order 

 SELECT name FROM users 
 UNION 
 SELECT name FROM items 
 ORDER BY name 

 11 



 --  ALL allows duplicates 
 SELECT name, id FROM users 
 WHERE id='1' 
 UNION ALL 
 SELECT name, id FROM items 
 WHERE id='4' 
 ORDER BY name 

 The HAVING clause is used instead of using an aggregate function 

 SELECT COUNT(id), name 
 FROM items 
 GROUP BY name 
 HAVING COUNT(id) > 0 

 SELECT COUNT(id), name 
 FROM items 
 GROUP BY name 
 HAVING COUNT(id) > 0 
 ORDER BY COUNT(id) DESC 

 The GROUP BY statement make it possible to group rows with the same value into a overview, 
 find in columns and display e.g. COUNT(), MAX(), MIN(), SUM(), AVG() in groups of names 

 SELECT COUNT(id), name 
 FROM items 
 GROUP BY name 

 SELECT COUNT(CustomerID), Country 
 FROM Customers 
 GROUP BY Country 
 ORDER BY COUNT(CustomerID) DESC; 

 Any topic that you find relevant 
 The SELECT * FROM user statement is also seen in document db as db.user.find({}) and in graph 
 SQL LIKE Surreal DB SELECT * FROM user the same as in SQL, but when SQL uses JOIN to 
 cross refer between tables, document embed or use referencing between documents, Graph use 
 -> <- WHERE and FROM and can perform complex multi-depth fetches. 

 12 


